A COMPUTER STUDY OF THE WIND FREQUENCY RESPONSE OF UNGUIDED ROCKETS

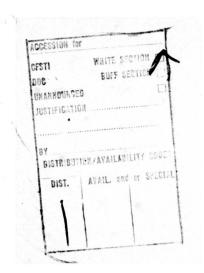
by
Edward M. D'Arcy

ATMOSPHERIC SCIENCES LABORATORY

WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this report is unlimited

DDC AVAILABILITY NOTICE


Distribution of this report is unlimited.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

A COMPUTER STUDY OF THE WIND FREQUENCY RESPONSE OF UNGUIDED ROCKETS

by

Edward M. D'Arcy

ECOM-5177

February 1968

DA TASK 1T014501B53 -10

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this report is unlimited.

ABSTRACT

The wind frequency response of several unguided rockets was studied using data collected by simultaneous releases of a jimsphere and a standard 100 gm balloon. Results show there can be large differences in the predicted rocket impacts using the two balloons. High wind frequencies are shown to affect the rocket only to a small degree and can be ignored in real-time rocket impact prediction applications. Averaging winds over a fifty-foot layer gives results comparable to the best Fourier smooth and binomial filter.

PRECEDING PAGE_BLANK

CONTENTS

	Page
ABSTRACT	iii
INTRODUCTION	1
DISCUSSION	1
CONCLUSIONS	S
DECEDENCES	1.4

PRECEDING PAGE BLANK

INTRODUCTION

Many people have asked questions regarding the wind frequency response of unguided rockets. This study was made in an attempt to answer some of these questions. The report actually contains three different studies: (1)compares predicted rocket impacts by using data obtained from a jimsphere and a standard 100 gm balloon (2) compares a Fourier smooth with a binomial filter and (3)shows the effect of averaging each wind profile through six different layer thicknesses.

rom the standpoint of impact prediction by high-speed computer, one can only analyze the effect that a certain wind profile has upon a given rocket trajectory. Wind data were obtained from a standard 100 gm balloon and a jimsphere released simultaneously. The data were smoothed by a Fourier series and by a binomial filter. The wind frequencies to be smoothed were determined from a paper published by Manuel Armendariz (1). The cutoff frequencies were chosen to eliminate balloon noise and to destroy as few as possible of the wind frequencies to which the rocket might respond.

The data were collected at three-foot intervals by cine-theodolites and rocket trajectories run on these original wind profiles. Since this requires tremendous amounts of computer storage, the data were also averaged through layers 24, 51, 99, 198, 498 and 999 feet thick to save storage space and to determine the effect of averaging on rocket impact accuracy.

Due to the large amount of computer time necessary for one complete analysis, the data for only four rockets are presented. These are, however, thought to be representative of most unguided rockets and hopefully all conclusions can be applied to other unguided rockets.

DISCUSSION

Two balloons, released simultaneously, were used to obtain the wind profiles. One was a standard 100 gm balloon and the other was a jimsphere. Armendariz (1), using the method used by Rogers and Camnitz (2), ran a power spectrum on these and other pairs of wind profiles. Figure 1 is a representative graph of the spectral density (after Armendariz). In all cases observed, on the jimsphere curve there was a flat spot between about .03 and .15 cycle/sec, representing a wave number of .002 and .01 cycle/foot respectively. A secondary peak at about .20 cycle/sec, representing .0133 cycle/foot,

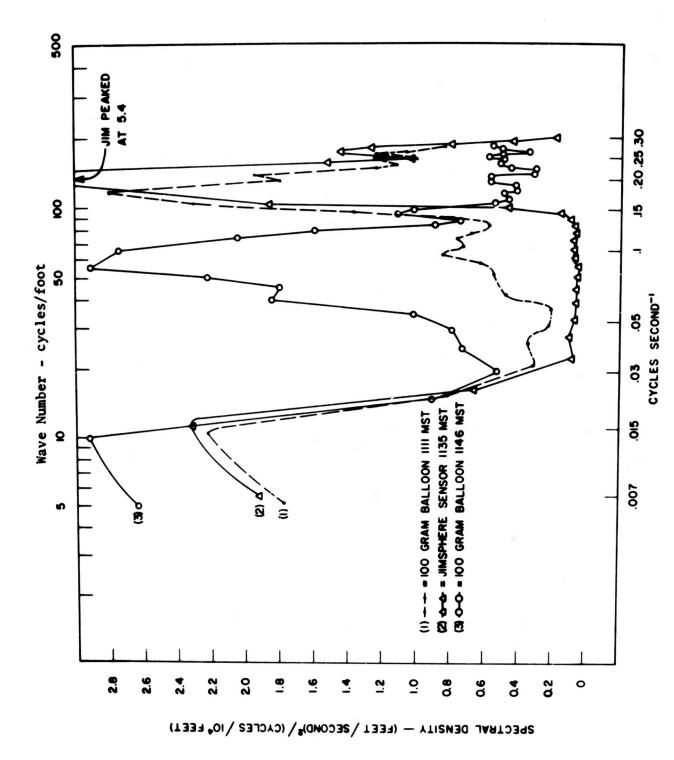


FIGURE 1 EXPERIMENTAL SPECTRA OF THE MERIDIONAL WINDS

is attributed to balloon noise. The standard 100 gm balloon shows a minimum frequency at about .03 cycle/sec, representing .002 cycle/foot, with several secondary peaks attributed to balloon noise, scattered between .05 and .30 cycle/sec, representing space frequencies of .0033 and .02 cycle/foot. These power spectra give us a starting point for our truncation of unwanted wind frequencies.

To eliminate the balloon-induced noise and still maintain a representative wind profile, one can truncate the wind frequencies above .01 cycle/foot on the jimsphere and see how this affects the predicted impact of the rocket. The truncation of the wind frequencies was accomplished by two methods: a Fourier series was fitted to the unsmoothed original data, and the unwanted frequencies in the wind profile were eliminated; and a binomial filter was used. An 83 point smoothing technique eliminated wind frequencies above .004 cycle/foot and a 167 point smoothing technique eliminated wind frequencies above .002 cycle/foot. Each of these truncated wind profiles was impressed on the trajectories of the four missiles, # 150-1b. payload Aerobee 350, a 500-1b. payload Aerobee 350, an Athena and a Nike-Apache. These three rockets were chosen because they cover a wide range of unguided missiles used for research. The Acrobee 350 is 50 feet long and weighs about 7000 pounds, the Athena is about 51 feet ong and weighs 16,000 pounds, and the Nike-Apache is 26 feet long and weighs 1700 pounds at launch. Tables I-VIII present the empirical results of this study.

First observe only the rocket impacts listed in the tables for the wind layer thickness of three feet. In the unsmoothed original data, one will immediately notice the large differences between the predicted rocket impact obtained from the jimsphere and that of the standard 100 gm balloon. It is not clear which is the more accurate; however, it is thought by most authorities in the field that the jimsphere will give a more representative wind profile (1).

The Fourier smooth of the three-foot data for the jimsphere shows only a small amount of the rocket's response is lost by truncating the wind frequencies at .01 cycles/foot. A much larger amount of response is lost if the wind frequencies above .002 cycle/foot are truncated. Truncation of any lower wind frequencies would result in larger errors in predicted rocket impact. Another example of this can be seen by observing each set of rocket impacts from the three-foot to the one-thousand*foot averaging intervals. The unsmoothed original three-foot data were averaged over layers of the different noted thicknesses. As larger layers are averaged the same effect as truncating the short wavelengths is observed.

The binomial filter did not work as well as the Fourier series, but here again the 83 point filter gave better results than the 167 point filter showing that the rocket does indeed respond to wavelengths of less than one-hundred feet.

To eliminate the balloon noise of the standard 100 gm balloon the Fourier series was truncated at .03 and .015 cycle/sec, which is equivalent to .002 and .001 cycle/foot. Here again the .002 cycle/foot shows greater agreement with the unsmoothed original data than does the .001 cycle/foot pointing out the rockets response to high wind frequencies. Again with the binomial filter the 83 point filter gave better results than the 167 point filter. It is rather difficult to say which method is better; however it appears as though the Fourier series truncated at .01 cycle/foot is the best method for the jimsphere, and the 83 point binomial filter is best for the standard 100 gm balloon. This is probably due to the different response characteristics of the two balloons.

Several things had to be considered to make the computer study valid. The rocket trajectory is composed of a series of points calculated from an integration procedure. The program used (3), contains checks to assure that the errors obtained in the Runge-Kutta integration do not got too large. It is possible to obtain a series of different predicted rocket impact points by simply changing the time constant of the integration. In other words, a rocket trajectory with an integration interval of one second will give a different impact point than one constrained to a maximum integration interval of onetenth of a second, even though the change may be only a few feet. Since the unsmoothed original data are profiles with points every three feet, the integration interval must be forced to three feet or less for the rocket to "see" the higher wind frequencies. For this study the wind profile covered the first 10,000 feet of the rocket trajectory, and the integration interval was adjusted to meet the maximum velocity obtained during this portion of the rocket trajectory. This extremely small integration interval, on the order of .001 second, causes the trajectory to take six or seven minutes to run where under normal integration intervals it would run in one and a half or two minutes. For real-time applications the higher wind frequencies can be eliminated without too great a loss in rocket impact prediction accuracy, and at least four minutes of trajectory calculation time would thus be saved. Also one can see that a high resolution profile necessitates a large number of data locations in the computer. At one point per three feet this would necessitate the allocation of about 250,000 data locations for wind alone in a profile for an Athena firing. Fortunately, the 51 foot averaged wind profiles are

not very different from the three foot unsmoothed original data. An earlier study (4), has shown that if one start; with 50 ft. layers at the end of the launcher, the layer thickness can be increased toward the top of the wind profile with only small losses in predicted rocket impact accuracy.

CONCLUSIONS

It appears safe to say that the jimsphere gives a more representative wind profile than the standard 100 gm balloon. If the secondary peaks observed in Fig. 1 are truely balloon noise, then the Fourier truncated wind profile and the 83 point binomial filter should give better results than the unsmoothed original data.

There is no doubt, in this study, that the rocket does respond to the higher wind frequencies. However, assuming the majority of the energy observed past .002 cycle/foot is due to balloon noise and observing the relatively small change in rocket impact due to smoothing, one can assume that these high wind frequencies affect the rocket only slightly. For very accurate theoretical studies the high wind frequencies can be used if desired, however for real-time purposes where time and storage considerations in the computer must be met, the higher frequencies can be ignored as can any extensive filtering of the data. Averaging the wind data through a layer is fast and, if the proper layer thicknesses are chosen, gives results comparable to a smoothed, high-resolution profile.

Although the above conclusions are based on data obtained from a mathematical simulation, it is thought that a true aerodynamic study would yield similar results.

TABLE I

AEROBEE 350-150 Lb. PAYLOAD

Jimsphere

	•	
Layer Thickness (feet)	X(feet)	Y(feet)
3	-93804	1140401
24	-93185	1138690
51	-92830	1137761
99	-89606	1139772
198	-86943	1142287
498	- 75211	1159879
999	-55903	1139002
		1133001
	Fourier Smooth .01	
3	-92506	1144638
24	-92570	1140803
51	-91669	1140108
99	-89098	1141925
198	-85749	1143473
498	-75163	1140812
999	-55846	1139087
	Fourier Smooth .002	
3	-90704	1154423
24	-90371	1151500
51	-89841	1148937
99	-88817	1148671
198	-85176	11/5181
498	-75016	1142361
99	-55749	1139511
	Binomial Smooth 83 Pt.	
3	-84397	1142210
24	-83573	1143215
51	-83136	1142909
99	-80881	1144106
198	-77087	1145904
498	-65930	1141480
999	-51262	1139864
	Binomial Smooth 167 Pt.	
3	-73891	1144696
24	-73188	1144876
51	-72026	1147203
99	-70747	1144601
198	-67974	1142871
498	-58519	1141066
999	-49131	1142765

TABLE II

AEROBEE 350-150 Lb. PAYLOAD

Standard 100 gm Balloon

Layer Thickness (feet)	X(feet)	Y(feet)
3	-85377	1120410
24	-86877	1123878
51	-88572	1123321
99	-84264	1122429
198	-88168	1122234
498	-70639	1129645
999	-54183	1133501
	Fourier Smooth .002	
3	-87585	1123911
24	-87603	1123960
51	-87868	1123391
99	-88108	1122536
198	-85048	1125464
498	-70483	1129502
999	-54254	1133608
	Fourier Smooth .001	
3	-87991	1147068
24	-87974	1146912
51	-87785	1145385
99	-86909	1140487
198	-84060	1133974
498	-70132	1132632
999	-54135	1134930
	Binomial Smooth 83 Pt.	
3	-81507	1117419
24	-82371	1117037
51	-83388	1118164
99	-83242	1121494
198	-76052	1124346
498	-62235	1129928
999	-50387	1135182
	Binomial Smooth 167 Pt.	
3	-78394	1128020
24	-76774	1128299
51	-75836	1128932
99	-73574	1130032
198	- 67593	1131592
498	-57187	1136449
999	-48329	1137399

TABLE III

AEROBEE 350-500 Lb. PAYLOAD

Jimsphere

3 -57704 868673 24 -59298 861367 51 -59034 859814 99 -56565 862240 198 -54301 863445 498 -45470 862863 999 -31275 862005 Fourier Smooth .01 3 -58888 866386 24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515 999 -31242 862084	Layer Thickness (feet)	X(feet)	Y(feet)
24 -59298 861367 51 -59034 859814 99 -56565 862240 198 -54301 863445 498 -45470 862863 999 -31275 862005 Fourier Smooth .01 3 -58888 866386 24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515	3	-57704	868673
51			
99 -56565 862240 198 -54301 863445 498 -45470 862863 999 -31275 862005 Fourier Smooth .01 3 -58888 866386 24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515			
198			
498 -45470 862863 999 -31275 862005 Fourier Smooth .01 3 -58888 866386 24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515			
999 -31275 862005 Fourier Smooth .01 3 -58888 866386 24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515			
3 -58888 866386 24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515			
24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515		Fourier Smooth .01	
24 -58804 862205 51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515	3	-58888	866386
51 -58108 861786 99 -56201 863779 198 -53527 864930 498 -45411 863515			
198 -53527 864930 498 -45411 863515	51	-58108	861786
498 -45411 863515	99	-56201	863779
	198	-53527	864930
999 -31242 862084	498	-45411	863515
	999	-31242	862084
Fourier Smooth .002		Fourier Smooth .002	
3 -57365 873708	3	-57365	873708
24 -57118 869894	24	-57118	869894
51 -56795 869138	51	- 56795	869138
99 -55738 866185	99	-55738	866185
198 -53104 866208	198	-53104	866208
498 -45216 863497	498	-45216	863497
999 -31111 861376	999	-31111	861376
Binomial Smooth 83 Pt.		Binomial Smooth 83 Pt.	
3 -52679 864166	3	-52679	864166
24 -51989 864143	24	-51989	864143
51 -51611 863837	51	-51611	863837
99 -49819 864504	99	-49819	864504
198 -46959 865438	198	-46959	865438
498 -38645 864534	498		
999 -28171 862177	999	-28171	862177
Binomial Smooth 167 Pt.		Binomial Smooth 167 Pt.	
3 -44574 866048	3	-44574	866048
24 -43937 865268		-43937	
51 -42904 865421			865421
99 -42063 865007			
198 -39935 864078			
498 -33096 862849			
999 -26912 861764	999	-26912	861764

TABLE IV AEROBEE 350-500 Lb. PAYLOAD Standard 100 gm Balloon

	B 541100	•
	Original Data	
Layer Thicknes (feet)	s X(feet)	Y(feet)
3	-53413	847063
24	-54366	848542
51	-55668	849006
99	-52331	848601
198	- 55458	848839
498	-42331	855328
999	-30059	856924
	Fourier Smooth .002	
3	-55224	850351
24	-55225	850553
51	-53906	854970
99	-55494	848431
198	-53193	851562
498	-42106	854683
999	-30167	858137
	Fourier Smooth .001	
3	-55143	868696
24	-55193	869383
51	-52667	872532
99	-54334	863960
198	-52199	859202
498	-41835	857789
999	-30040	858036
_	Binomial Smooth 83 Pt.	
3	-50511	845621
24	-51083	844434
51	-51872	846405
99	- 51815	849174
198	-46297	850375
498 999	-35863	854206
999	-27533	859194
	Binomial Smooth 167 Pt.	
3	-48099	854025
24	-46888	854827
51	-46143	855217
99	-44392	855541
198	-39706	857251
498	-31972	857426
999	-26257	859228

TABLE V

ATHENA

Jimsphere

	original bata	
Layer Thickness (feet)	X(feet)	Y(feet)
_	1504204	-1744913
3	1594284	-1744627
24	1593861	-1744296
51	1593979	
99	1592572 1593237	-1743482 -1746626
198		-1746359
498	1592616 1602055	-1746339 -1739926
999		-1/39920
_	Fourier Smooth .01	
3	1593592	-1744153
24	1593828	-1744593
51	1595353	-1746579
99	1593593	-1745183
198	1592340	-1745172
498	1592998	-1746008
999	1602284	-1739707
	Fourier Smooth .002	
3	1594024	-1745634
24	1592445	-1743881
51	1593641	-1745323
99	1594160	-1746340
198	1592398	-1745233
498	1593357	-1745509
999	1603779	-1740480
	Binomial Smooth 83 Pt.	
3	1594359	-1745567
24	1593269	-1744428
51	1593185	-1744777
99	1593191	-1744776
198	1593079	-1745277
498	1595637	-1745297
999	1605642	-1739457
	Binomial Smooth 167 Pt.	
3	1593062	-1744497
24	1592970	-1744481
51	1592837	-1744459
99	1593429	-1745976
198	1592445	-1744125
498	1600637	-1743517
999	1607093	-1736878

TABLE VI

ATHENA

Standard 100 gm Balloon

Layer Thickness (feet)	X(feet)	Y(feet)
3	1590694	-1750412
24	1590632	-1750022
51	1590956	-1749598
99	1591798	-1748082
198	1593024	-1749894
498	1594129	-1746604
999	1601587	-1743687
	Fourier Smooth .002	
3	1592387	-1749370
24	1592196	-1749197
51	1592577	-1749723
99	1591089	-1748279
198	1592592	-1750496
498	1593826	-1747524
999	1601608	-1743657
	Fourier Smooth .001	
3	1589845	-1752583
24	1589031	-1751629
51	1589694	-1752351
99	1589542	-1751921
198	1590664	-1752076
498	1593515	-1747348
999	1601754	-1741124
	Binomial Smooth 83 Pt.	
3	1591509	-1751260
24	1591002	-1750409
51	1591536	-1750347
99	1590973	-1750076
198	1591156	-1750269
498	1593397	-1748433
999	1602738	-1740822
	Binomial Smooth 167 Pt	•
3	1589894	-1749503
24	1590353	-1749941
51	1591201	-1750514
99	1590120	-1749394
198	1590590	-1749357
498	1597272	-1745766
999	1604326	-1738027

TABLE VII

NIKE-APACHE

Jimsphere

	Oliginal Data	
Layer Thickness (feet)	X(feet)	Y(feet)
3	36135	126665
24	35536	126997
51	34605	128174
99	34191	128047
198	34550	126873
	33754	125812
498	32941	120733
999		120733
	Fourier Smooth .01	
3	34775	127441
24	34742	127469
51	34624	127402
99	34504	127135
198	34270	127304
498	34085	125777
999	33053	120656
2.5.2	Fourier Smooth .002	
3	34489	127327
24	34507	127434
51	34499	127420
99	34477	127439
198	34300	127033
498	34052	125652
999	33071	120448
333	Binomial Smooth 83 Pt.	220110
3	35425	127045
	35161	127316
24 51	34950	127259
	34985	127808
99	34770	127420
198	34543	126134
498	33654	120342
999	33034	120342
	Binomial Smooth 167 Pt.	
3	35058	127453
24	34924	127632
51	34432	127836
99	34408	127535
198	34463	127334
498	34494	125706
999	33898	120903
		COOK N N

TABLE VIII

NIKE-APACHE

Standard 100 gm Balloon

Layer Thickness (feet)	X(feet)	Y(feet)
3	31198	125820
24	31285	125395
51	31615	125181
99	31490	123083
198	33446	123218
498	33823	123152
999	32762	119974
*	Fourier Smooth .002	
3	33375	123377
24	33382	123385
51	33372	123276
99	33451	123414
198	33653	123410
498	33871	123295
999	32754	119746
	Fourier Smooth .001	
3	32891	124208
24	32892	124214
51	32898	124204
99	32930	124192
198	33039	124082
498	3347 6	123050
999	32301	119698
	Binomial Smooth 83 Pt.	
3	31247	125389
24	31267	125145
51	31450	124418
99	32498	123754
198	32934	123615
498	34354	122632
999	33601	119089
	Binomial Smooth 167 Pt.	
3	31311	125157
24	31334	124853
51	31495	124589
99	32111	124338
198	33194	122328
498	34363	121876
999	33867	119650

REFERENCES

- 1. Armendariz, M., and H. Rachele, "Determination of a Representative Wind Profile from Balloon Data," J. Geophys. Res., 72, 2997-3006, 1967.
- Rogers, R. R., and H. G. Camnitz, "An Investigation of Aerodynamically-Induced Balloon Motions," Final Report CAL VC 1912-p-1, Contract NAS 8 11140, 80 pp., 1965.
- Walter, Everett L., "Six-Variable Ballistic Model for a Rocket," Technical Report MM-445, U.S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico, June 1962.
- 4. D'Arcy, Edward M., "Some Applications of Wind to Unguided Rocket Impact Predictions," ECOM-5112, Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico, March 1967.

ATMOSPHERIC SCIENCES RESEARCH PAPERS

- Webb, W.L., "Development of Droplet Size Distributions in the Atmosphere," June 1954.
- Hansen, F. V., and H. Rachele, "Wind Structure Analysis and Forecasting Methods for Rockets," June 1954.
- Webb, W. L., "Net Electrification of Water Droplets at the Earth's Surface," J. Me-3. teorol., December 1954.
- Mitchell, R., "The "The Determination of Non-Ballistic Projectile Trajectories," March
- 5.
- 6.
- Webb, W. L., and A. McPike, "Sound Ranging Technique for Determining the Trajectory of Supersonic Missiles," #1, March 1955.

 Mitchell, R., and W. L. Webb, "Electromagnetic Radiation through the Atmosphere," #1, April 1955.

 Webb, W. L., A. McPike, and H. Thompson, "Sound Ranging Technique for Determining the Trajectory of Supersonic Missiles," #2, July 1955.

 Barichivich, A., "Meteorological Effects on the Refractive Index and Curvature of Microwaves in the Atmosphere" Appendix 1955. 7.
- 8.
- Microwaves in the Atmosphere," August 1955.
 Webb, W. L., A. McPike and H. Thompson, "Sound Ranging Technique for Deter-9.
- mining the Trajectory of Supersonic Missiles," #3, September 1955.

 Mitchell, R., "Notes on the Theory of Longitudinal Wave Motion in the Atmo-10. sphere," February 1956.
- 12.
- 13.
- Webb, W. L., "Particulate Counts in Natural Clouds," J. Meteorol., April 1950. Webb, W. L., "Wind Effect on the Aerobee," #1, May 1956. Rachele, H., and L. Anderson, "Wind Effect on the Aerobee," #2, August 1956. Beyers, N., "Electromagnetic Radiation through the Atmosphere," #2, January 1957. Hansen, F. V., "Wind Effect on the Aerobee," #3, January 1957. 14. 15.
- 16.
- Kershner, J., and H. Bear, "Wind Effect on the Aerobee," #3, January 1957.

 Kershner, J., and H. Bear, "Wind Effect on the Aerobee," #4, January 1957.

 Hoidale, G., "Electromagnetic Radiation through the Atmosphere," #3, February 1957.

 Querfeld, C. W., "The Index of Refraction of the Atmosphere for 2.2 Micron Radiation," March 1957.

 White Lloyd "Wind Effect on the Atmosphere for 2.2 Micron Radiation," March 1957. 18.
- White, Lloyd, "Wind Effect on the Aerobee," #5, March 1957. Kershner, J. G., "Development of a Method for Forecasting Component Ballistic 20. Wind," August 1957.
- Layton, Ivan, "Atmospheric Particle Size Distribution," December 1957. 21.
- Rachele, Henry and W. H. Hatch, "Wind Effect on the Aerobee," #6, February 22. 1958.
- Beyers, N. J., "Electromagnetic Radiation through the Atmosphere," #4, March 23. 1958.
- Prosser, Shirley J., "Electromagnetic Radiation through the Atmosphere," #5, April 1958.

 Armendariz, M., and P. H. Taft, "Double Theodolite Ballistic Wind Computations," 24.
- 25. June 1958.
- Jenkins, K. R. and W. L. Webb, "Rocket Wind Measurements," June 1958. 26.
- 27.
- Jenkins, K. R., "Measurement of High Altitude Winds with Loki," July 1958. Hoidale, G., "Electromagnetic Propagation through the Atmosphere," #6, Febru-28. ary 1959.
- McLardie, M., R. Helvey, and L. Traylor, "Low-Level Wind Profile Prediction Techniques," #1, June 1959. 29.
- Lamberth, Roy, "Gustiness at White Sands Missile Range," #1, May 1959. 30.
- Beyers, N. J., B. Hinds, and G. Hoidale, "Electromagnetic Propagation through the Atmosphere," #7, June 1959. 31.
- Beyers, N. J., "Radar Refraction at Low Elevation Angles (U)," Proceedings of the 32.
- Army Science Conference, June 1959.

 White, L., O. W. Thiele and P. H. Taft, "Summary of Ballistic and Meteorological Support During IGY Operations at Fort Churchill, Canada," August 33. 1959.
- Hainline, D. A., "Drag Cord-Aerovane Equation Analysis for Computer Application," 34. August 1959.
- Hoidale, G. B., "Slope-Valley Wind at WSMR," October 1959. 35.
- Webb, W. L., and K. R. Jenkins, "High Altitude Wind Measurements," J. Meteorol., 16, 5, October 1959.

- White, Lloyd, "Wind Effect on the Aerobee," #9, October 1959.
- Webb, W. L., J. W. Coffman, and G. Q. Clark, "A High Altitude Acoustic Sensing System," December 1959. 38.
- Webb, W. L., and K. R. Jenkins, "Application of Meteorological Rocket Systems," J. Geophys. Res., 64, 11, November 1959. 39.
- Duncan, Louis, "Wind Effect on the Aerobee," #10, February 1960. **4**0.
- Helvey, R. A., "Low-Level Wind Profile Prediction Techniques," #2, February 1960. 41.

- Helvey, R. A., "Low-Level Wind Profile Prediction Techniques," #2, February 1960.

 Webb, W. L., and K. R. Jenkins. "Rocket Sounding of High-Altitude Parameters," Proc. GM Rel. Symp., Dept. of Defense, February 1960.

 Armendariz, M., and H. H. Monahan, "A Comparison Between the Double Theodolite and Single-Theodolite Wind Measuring Systems," April 1960.

 Jenkins, K. R., and P. H. Taft, "Weather Elements in the Tularosa Basin," July 1960.

 Beyers, N. J., "Preliminary Radar Performance Data on Passive Rocket-Borne Wind Sensors," IRE TRANS, MIL ELECT, MIL-4, 2-3, April-July 1960.

 Webb, W. L., and K. R. Jenkins, "Speed of Sound in the Stratosphere," June 1960.

 Webb, W. L., K. R. Jenkins, and G. Q. Clark, "Rocket Sounding of High Atmosphere Meteorological Parameters," IRE Trans. Mil. Elect., MIL-4, 2-3, April-July 1960. April-July 1960.
- Helvey, R. A., "Low-Level Wind Profile Prediction Techniques," #3, September 1960.
- Beyers, N. J., and O. W. Thiele, "Meteorological Wind Sensors," August 1960. 49.
- Armijo, Larry, "Determination of Trajectories Using Range Data from Three Non-colinear Radar Stations," September 1960. Carnes, Patsy Sue, "Temperature Variations in the First 200 Feet of the Atmo-50.
- sphere in an Arid Region," July 1961. Springer, H. S., and R. O. Olsen, "Launch Noise Distribution of Nike-Zeus Mis-**52**.
- siles," July 1961.

 Thiele, O. W., "Density and Pressure Profiles Derived from Meteorological Rocket Measurements," September 1961. 53.
- Diamond, M. and A. B. Gray, "Accuracy of Missile Sound Ranging," November 1961.
- Lamberth, R. L. and D. R. Veith, "Variability of Surface Wind in Short Distances," 55. #1, October 1961. Swanson, R. N., "Low-Level Wind Measurements for Ballistic Missile Application,"
- January 1962.
- Lamberth, R. L. and J. H. Grace, "Gustiness at White Sands Missile Range," #2, 57. January 1962
- Swanson, R. N. and M. M. Hoidale, "Low-Level Wind Profile Prediction Techniques," #4, January 1962.

 Rachele, Henry, "Surface Wind Model for Unguided Rockets Using Spectrum and Cross Spectrum Techniques," January 1962.

 Rachele, Henry, "Sound Propagation through a Windy Atmosphere," #2, Febru-59
- ary 1962.
- Webb, W. L., and K. R. Jenkins, "Sonic Structure of the Mesosphere," J. Acous. 61. Soc. Amer., 34, 2, February 1962
- Tourin, M. H. and M. M. Hoidale, "Low-Level Turbulence Characte istics at White Sands Missile Range," April 1962.
- Miers, Bruce T., "Mesospheric Wind Reversal over White Sands Missile Range," 63. March 1962
- Fisher, E., R. Lee and H. Rachele, "Meteorological Effects on an Acoustic Wave 64. within a Sound Ranging Array," May 1962.
- "Six Variable Ballistic Model for a Rocket," June 1962. 65.
- Walter, E. L., "Six Variable Ballistic Model for a Rocket," June 1962. Webb, W. L., "Detailed Acoustic Structure Above the Tropopause," J. Applied Me-66 teorol., 1, 2, June 1962.
- Jenkins, K. R., "Empirical Comparisons of Meteorological Rocket Wind Sensors," J. 67.
- Appl. Meteor., June 1962.

 Lamberth, Roy, "Wind Variability Estimates as a Function of Sampling Interval,"
- July 1962 nry, "Surface Wind Sampling Periods for Unguided Rocket Impact Pre-69 Rachele, Henry, diction," July 1962.
- Traylor, Larry, "Coriolis Effects on the Aerobee-Hi Sounding Rocket," August 1962.
- McCoy, J., and G. Q. Clark, "Meteorological Rocket Thermometry," August 1962. Rachele, Henry, "Real-Time Prelaunch Impact Prediction System," August 1962.

- 73. Beyers, N. J., O. W. Thiele, and N. K. Wagner, "Performance Characteristics of Meteorlogical Rocket Wind and Temperature Sensors," October 1962.
- Coffman, J., and R. Price. "Some Errors Associated with Acoustical Wind Measurements through a Layer," October 1962.
- Armendariz, M., E. Fisher, and J. Serna, "Wind Shear in the Jet Stream at WS-MR," November 1962.
- Armendariz, M., F. Hansen, and S. Carnes, "Wind Variability and its Effect on Rocket Impact Prediction," January 1963.
- Querfeld, C., and Wayne Yunker, "Pure Rotational Spectrum of Water Vapor, I: Table of Line Parameters," February 1963.
- Webb, W. L., "Acoustic Component of Turbulence," J. Applied Meteorol., 2, 2, April 1963.
- 79. Beyers, N. and L. Engberg, "Seasonal Variability in the Upper Atmosphere," May
- Williamson, L. E., "Atmospheric Acoustic Structure of the Sub-polar Fall," May 1963. 80.
- Lamberth, Roy and D. Veith, "Upper Wind Correlations in Southwestern United 81. States," June 1963.
- Sandlin. E., "An analysis of Wind Shear Differences as Measured by AN FPS-16 Radar and AN GMD-1B Rawinsonde," August 1963. 82.
- 83.
- Diamond, M. and R. P. Lee, "Statistical Data on Atmospheric Design Properties Above 30 km," August 1963.

 Thiele, O. W., "Mesospheric Density Variability Based on Recent Meteorological Rocket Measurements," J. Applied Meteorol., 2, 5, October 1963.

 Diamond, M., and O. Essenwanger, "Statistical Data on Atmospheric Design Properties to 30 km," Astro. Aero. Engr., December 1963.
- 85.
- Hansen, F. V., "Turbulence Characteristics of the First 62 Meters of the Atmo-86.
- sphere," December 1963.

 Morris, J. E., and B. T. Miers, "Circulation D. arbances Between 25 and 70 kilometers Associated with the Sudden Warming of 1963," J. of Geophys. Res., January 1964.
- Thiele, O. W., "Some Observed Short Term and Diurnal Variations of Stratospheric Density Above 30 km," January 1964. 88.
- Sandlin, R. E., Jr. and E. Armijo, "An Analysis of AN FPS-16 Radar and AN GMD-1B Rawinsonde Data Differences," January 1964.

 Miers, B. T., and N. J. Beyers, "Rocketsonde Wind and Temperature Measure-89.
- 90 ments Between 30 and 70 km for Selected Stations," J. Applied Meteorol., February 1964.
- Webb, W. L., "The Dynamic Stratosphere," Astronautics and Aerospace Engineer-91.
- 92.
- ing, March 1964.

 Low, R. D. H., "Acoustic Measurements of Wind through a Layer," March 1964.

 Diamond. M., "Cross Wind Effect on Sound Propagation," J. Applied Meteorol. 93. April 1964.
- 94 Lee, R. P., "Acoustic Ray Tracing," April 1964.
- 95 Reynolds, R. D., "Investigation of the Effect of Lapse Rate on Balloon Ascent Rate," May 1964
- Webb, W. L., "Scale of Stratospheric Detail Structure," Space Research V. May 96. 1964.
- 97. Barber, T. L., "Proposed X-Ray-Infrared Method for Identification of Atmospher-
- Thiele, O. W., "Ballistic Procedures for Unguided Rocket Studies of Nuclear Environments (U)," Proceedings of the Army Science Conference, June 1964.

 Horn, J. D., and E. J. Trawle, "Orographic Effects on Wind Variability," July 1964.

 Hoidale, G., C. Querfeld, T. Hall, and R. Mireles, "Spectral Transmissivity of the 98
- 100. Earth's Atmosphere in the 250 to 500 Wave Number Interval," September 1964
- 101. Duncan, L. D., R. Ensey, and B. Engebos, "Athena Launch Angle Determination, September 1964

 Thiele, O. W., "Feasibility Experiment for Measuring Atmospheric Density Through
- 102 the Altitude Range of 60 to 100 KM Over White Sands Missile Range." October 1964
- Duncan, L. D., and R. Ensey, "Six-Degree-of-Freedom Digital Simulation Model for Unguided, Fin-Stabilized Rockets," November 1964.

- Hoidale, G., C. Querfeld, T. Hall, and R. Mireles, "Spectral Transmissivity of the 104. Earth's Atmosphere in the 250 to 500 Wave Number Interval," November 1964.
- Webb, W. L., "Stratospheric Solar Response," J. Atmos. Sci., November 1964. 105.
- McCoy, J. and G. Clark, "Rocketsonde Measurement of Stratospheric Temperature," 106. December 1964.
- Farone, W. A., "Electromagnetic Scattering from Radially Inhomogeneous Spheres 107. as Applied to the Problem of Clear Atmosphere Radar Echoes," December 1964.
- Farone, W. A., "The Effect of the Solid Angle of Illumination or Observation on the 108. Color Spectra of 'White Light' Scattered by Cylinders," January 1965.
- Williamson, L. E., "Seasonal and Regional Characteristics of Acoustic Atmospheres," 109 J. Geophys. Res., January 1965.
- 110.
- Armendariz, M., "Ballistic Wind Variability at Green River, Utah," January 1965. Low, R. D. H., "Sound Speed Variability Due to Atmospheric Composition," January 1965.
- Querfeld, C. W., 'Mie Atmospheric Optics," J. Opt. Soc. Amer., January 1965.
- Coffman, J., "A Measurement of the Effect of Atmospheric Turbulence on the Coherent Properties of a Sound Wave," January 1965. 113.
- Rachele, H., and D. Veith, "Surface Wind Sampling for Unguided Rocket Impact 114.
- Prediction," January 1965.

 Ballard, H., and M. Izquierdo, "Reduction of Microphone Wind Noise by the Gen-115. eration of a Proper Turbulent Flow," February 1965.
- perimental Spectra," February 1965.

 Richart, H., "Inaccuracies of the Single-Theodolite Wind Measuring System in Ballistic Application," February 1965.

 D'Arcy M. "Theostical and B. Mireles, R., "An Algorithm for Computing Half Widths of Overlapping Lines on Ex-
- 117.
- D'Arcy, M., "Theoretical and Practical Study of Aerobee-150 Ballistics," March 1965.
- McCoy, J., "Improved Method for the Reduction of Rocketsonde Temperature Da-119. ta," March 1965.
- Mireles, R., "Uniqueness Theorem in Inverse Electromagnetic Cylindrical Scatter-
- ing," April 1965.

 Coffman, J., "The Focusing of Sound Propagating Vertically in a Horizontally Stratified Medium," April 1965. 121.
- Farone, W. A., and C. Querfeld, "Electromagnetic Scattering from an Infinite Circular Cylinder at Oblique Incidence," April 1965. 122.
- Rachele, H., "Sound Propagation through a Windy Atmosphere," April 1965. 123.
- Miers, B., "Upper Stratospheric Circulation over Ascension Island," April 1965.
 Rider, L., and M. Armendariz, "A Comparison of Pibal and Tower Wind Measurements," April 1965. 124.125.
- 126.
- ments," April 1965.

 Hoidale, G. B., "Meteorological Conditions Allowing a Rare Observation of 24 Micron Solar Radiation Near Sea Leve "Interval Magazine, May 1965.

 Beyers, N. J., and B. T. Miers, "Diurnal Temporature Change in the Atmosphere Retween 30 and 60 km over White Sands Missile Range," J. Atmos. 127. Sci., May 1965.
- Querfeld, C., and W. A. Farone, "Tables of the Mie Forward Lobe," May 1965. 128.
- Farone, W. A., Generalization of Rayleigh-Gans Scattering from Radially Inhomogeneous Spheres," J. Opt. Soc. Amer., June 1965.

 Diamond, M., "Note on Mesospheric Winds Above White Sands Missile Range," J. 129.
- Applied Meteorol., June 1965.
- Clark, G. Q., and J. G. McCoy, "Measurement of Stratospheric Temperature," J. Applied Meteorol, June 1965.
 Hall, T., G. Hoidale, R. Mireles, and C. Querfeld, "Spectral Transmissivity of the 131.
- Earth's Atmosphere in the 250 to 500 Wave Number Interval," July 1965.
- 133.
- 134.
- McCoy, J., and C. Tate, "The Delta-T Meteorological Rocket Payload," June 1964. Horn, J. D., "Obstacle Influence in a Wind Tunnel," July 1965.
 McCoy, J., "An AC Probe for the Measurement of Electron Density and Collision Frequency in the Lower Ionosphere," July 1965.
 Miers, B. T., M. D. Kays, O. W. Thiele and E. M. Newby, "Investigation of Short 135.
- Term Variations of Several Atmospheric Parameters Above 30 KM, July 1965.

- Serna, J., "An Acoustic Ray Tracing Method for Digital Computation," September 137. 1965.
- Webb, W. L., "Morphology of Noctilucent Clouds," J. Geophys. Res., 70, 18, 4463-138. 4475, September 1965.
- Kays, M., and R. A. Craig, "On the Order of Magnitude of Large-Scale Vertical Mo-139. tions in the Upper Stratosphere," J. Geophys. Res., 70, 18, 4453-4462, September 1965.
- Rider, L., "Low-Level Jet at White Sands Missile Range," September 1965. 140.
- Lamberth, R. L., R. Reynolds, and Morton Wurtele, "The Mountain Lee Wave at White Sands Missile Range," Bull. Amer. Meteorol. Soc., 46, 10, Octo-141. ber 1965.
- 142. Reynolds, R. and R. L. Lamberth, "Ambient Temperature Measurements from Ra-
- diosondes Flown on Constant-Level Balloons," October 1965.

 McCluney, E., "Theoretical Trajectory Performance of the Five-Inch Gun Probe 143. System," October 1965.
- Pena, R. and M. Diamond, "Atmospheric Sound Propagation near the Earth's Sur-144. face," October 1965.
- Mason, J. B., "A Study of the Feasibility of Using Radar Chaff For Stratospheric Temperature Measurements," November 1965. 145.
- Diamond, M., and R. P. Lee, "Long-Range Atmospheric Sound Propagation," J. 146. Geophys. Res., 70, 22, November 1965.
- Lamberth, R. L., "On the Measurement of Dust Devil Parameters," November 1965. 147.
- Hansen, F. V., and P. S. Hansen, "Formation of an Internal Boundary over Heter-148. ogeneous Terrain," November 1965.
- Webb, W. L., "Mechanics of Stratospheric Seasonal Reversals," November 1965. 149.
- U. S. Army Electronics R & D Activity, "U. S. Army Participation in the Meteoro-150. logical Rocket Network," January 1966.
- Rider, L. J., and M. Armendariz, "Low-Level Jet Winds at Green River, Utah," Feb-151. ruary 1966.
- 152.
- Webb, W. L., "Diurnal Variations in the Stratospheric Circulation," February 1966. Beyers, N. J., B. T. Miers, and R. J. Reed, "Diurnal Tidal Motions near the Stratopause During 48 Hours at WSMR," February 1966. 153.
- Webb, W. L., "The Stratospheric Tidal Jet," February 1966. 154.
- Hall, J. T., "Focal Properties of a Plane Grating in a Convergent Beam," February 155. 1966.
- 156. Duncan, L. D., and Henry Rachele, "Real-Time Meteorological System for Firing of Unguided Rockets," February 1966.
- 157. Kays, M. D., "A Note on the Comparison of Rocket and Estimated Geostrophic Winds
- at the 10-mb Level," J. Appl. Meteor., February 1966.

 Rider, L., and M. Armendariz, "A Comparison of Pibal and Tower Wind Measurements," J. Appl. Meteor., 5, February 1966. 158.
- Duncan, L. D., "Coordinate Transformations in Trajectory Simulations," February 159. 1966.
- Williamson, L. E., "Gun-Launched Vertical Probes at White Sands Missile Range." 160. February 1966.
- 161. Randhawa, J. S., Ozone Measurements with Rocket-Borne Ozonesondes," March **1966**.
- 162. Armendariz, Manuel, and Laurence J. Rider, "Wind Shear for Small Thickness Lay-
- ers," March 1966. Low, R. D. H., "Continuous Determination of the Average Sound Velocity over an 163. Arbitrary Path," March 1966.
- Hansen, Frank V., "Richardson Number Tables for the Surface Boundary Layer." 164. March 1966.
- Cochran, V. C., E. M. D'Arcy, and Florencio Ramirez, "Digital Computer Program for Five-Degree-of-Freedom Trajectory," March 1966. 165.
- 166. Thiele, O. W., and N. J. Beyers, "Comparison of Rocketsonde and Radiosonde Temperatures and a Verification of Computed Rocketsonde Pressure and Den-
- sity," April 1966.

 Thiele, O. W., "Observed Diurnal Oscillations of Pressure and Density in the Upper 167. Stratosphere and Lower Mesosphere," April 1966.
- Kays, M. D., and R. A. Craig, "On the Order of Magnitude of Large-Scale Vertical 168. Motions in the Upper Stratosphere," J. Geophy. Res., April 1966.
- Hansen, F. V., "The Richardson Number in the Planetary Boundary Layer," May 169. 1966.

Ballard, H. N., "The Mea: urement of Temperature in the Stratosphere and Mesosphere," June 1966. Hansen, Frank V., "The Ratio of the Exchange Coefficients for Heat and Momentum

in a Homogeneous, Thermally Stratified Atmosphere," June 1966.

Hansen, Frank V., "Comparison of Nine Profile Models for the Diabatic Boundary Layer," June 1966.

"A Sound-Ranging Technique for Locating Supersonic Missiles," Rachele, Henry, 173. May 1966.

Farone, W. A., and C. W. Querfeld, "Electromagnetic Scattering from Inhomogeneous Infinite Cylinders at Oblique Incidence," J. Opt. Soc. Amer. 56, 4, 476-480. April 1966. 175.

Mireles, Ramon, "Determination of Parameters in Absorption Spectra by Numerical Minimization Techniques," J. Opt. Soc. Amer. 56, 5, 644-647, May 1966.

Reynolds, R., and R. L. Lamberth, "Ambient Temperature Measurements from Radiosondes Flown on Constant-Level Balloons," J. Appl. Meteorol., 5, 3, 176. 304-307, June 1966.

Hall, James T., "Focal Properties of a Plane Grating in a Convergent Beam," Appl. Opt., 5, 1051, June 1966
Rider, Laurence J., "Low-Level Jet at White Sands Missile Range," J. Appl. Mete-177.

178.

orol., 5, 3, 283-287, June 1966.

McCluney, Eugene, "Projectile Dispersion as Caused by Barrel Displacement in the 5-Inch Gun Probe System," July 1966.

Armendariz, Manuel, and Laurence J. Rider, "Wind Shear Calculations for Small Shear Layers," June 1966. 180.

Lamberth, Roy L., and Manuel Armendariz, "Upper Wind Correlations in the Cen-

182.

184.

Lamberth, Roy L., and Manuel Armendariz, "Upper Wind Correlations in the Central Rocky Mountains," June 1966.
Hansen, Frank V., and Virgil D. Lang, "The Wind Regime in the First 62 Meters of the Atmosphere," June 1966.
Randhawa, Jagir S., "Rocket-Borne Ozonesonde," July 1966.
Rachele, Henry, and L. D. Duncan, "The Desirability of Using a Fast Sampling Rate for Computing Wind Velocity from Pilot-Balloon Data," July 1966.
Hinds, B. D., and R. G. Pappas, "A Comparison of Three Methods for the Correction of Radar Elevation Angle Refraction Errors," August 1966.
Riedmuller, G. F., and T. L. Barber, "A Mineral Transition in Atmospheric Dust Transport," August 1966.
Hall, J. T., C. W. Querield, and G. B. Holdale, "Spectral Transmissivity of the 185.

186.

C. W. Querfeld, and G. B. Hoidale, "Spectral Transmissivity of the Earth's Atmosphere in the 250 to 500 Wave Number Interval," Part Hall, J. T., 187. IV (Final), July 1966.

Duncan, L. D. and B. F. Engebos, "Techniques for Computing Launcher Settings for Unguided Rockets," September 1966.

Duncan, L. D., "Basic Considerations in the Development of an Unguided Rocket Trajectory Simulation Model." September 1966. Miller, Walter B., "Consideration of Some Problems in Curve Fitting," September **190**.

1966.

188.

191.

192

193.

1966.

Cermak, J. E., and J. D. Horn, "The Tower Shadow Effect," August 1966.

Webb, W. L., "Stratospheric Circulation Response to a Solar Eclipse," October 1966.

Kennedy, Bruce, "Muzzle Velocity Measurement," October 1966.

Traylor, Larry F., "A Refinement Technique for Unguided Rocket Drag Coefficients," October 1966

Nusbaum, Henry, "A Reagent for the Simultaneous Microscope Determination of Quartz and Halides," October 1966.

Kays, Marvin and R. O. Olsen, "Improved Rocketsonde Parachute-derived Wind Profiles," October 1966.

Engebos, Bernard F. and Duncan, Louis D., "A Nomogram for Field Determination of Launcher Angles for Unguided Rockets" October 1966 194. 195.

196.

197. tion of Launcher Angles for Unguided Rockets," October 1966. Webb, W. L., "Midlatitude Clouds in the Upper Atmosphere," November 1966

198.

Hansen, Frank V., "The Lateral Intensity of Turbulence as a Function of Stability," 199. November 1966.

Rider, L. J. and M. Armendariz, "Differences of Tower and Pibal Wind Profiles," 200. November 1966.

Lee, Robert P., "A Comparison of Eight Mathematical Models for Atmospheric Acoustical Ray Tracing," November 1966.

Low, R. D. H., et al., "Acoustical and Meteorological Data Report SOTRAN I and II," November 1966. 201.

202.

Hunt, J. A. and J. D. Horn, "Drag Plate Balance," December 1966. 203

Armendariz, M., and H. Rachele, "Determination of a Representative Wind Profile from Balloon Data," December 1966. 204

Hansen Frank V., "The Aerodynamic Roughness of the Complex Terrain of White 205 Sanda Missile Range," January 1967

Morris, James E., "Wind Measurements in the Subpolar Mesopause Region," Jan-206. uary 1967.

Hall, James T., "Attenuation of Millimeter Wavelength Radiation by Gaseous Water," January 1967. 207.

Thiele, O. W., and N. J. Beyers, "Upper Atmosphere Pressure Measurements With Thermal Conductivity Gauges," January 1967. 208.

Armendariz, M., and H. Rachele, "Determination of a Representative Wind Profile 209 from Balloon Data," January 1967

Hansen, F. V., "The Aerodynamic Roughness of the Complex Terrain of White Sands 210 Missile Range, New Mexico," January 1967

D'Arcy, Edward M., "Some Applications of Wind to Unguided Rocket Impact Prediction," March 1967. 211.

Kennedy, Bruce, "Operation Manual for Stratosphere Temperature Sonde," March 212. 1967.

Hoidale, G. B., S. M. Smith, A. J. Blanco and T. L. Barber, "A Study of Atmospheric Dust," March 1967. 213.

Longyear, J. Q., "An Algorithm for Obtaining Solutions to Laplace's Titad Equations," March 1967. 214.

Rider, L. J., "A Comparison of Pibal with Raob and Rawin Wind Measurements," 215. April 1967.

Breeland, A. H., and R. S. Bonner, "Results of Tests Involving Hemispherical Wind Screens in the Reduction of Wind Noise," April 1967. 216.

Webb, Willis L., and Max C. Bolen, "The D-region Fair-Weather Electric Field," 217. April 1967.

Kubinski, Stanley F., "A Comparative Evaluation of the Automatic Tracking Pilot-Balloon Wind Measuring System," April 1967.

Miller, Walter B., and Henry Rachele, "On Comparametric Testing of the Nature of 218.

219. Certain Time Series," April 1967.

Hansen, Frank V., "Spacial and Temporal Distribution of the Gradient Richardson

220. Number in the Surface and Planetary Layers," May 1967.

221.

Randhawa, Jagir S., "Diurnal Variation of Ozone at High Altitudes," May 1967.

Ballard, Harold N., "A Review of Seven Papers Concerning the Measurement of
Temperature in the Stratosphere and Mesosphere," May 1967. 222.

Williams, Ben H., "Synoptic Analyses of the Upper Stratospheric Circulation Dur-223. ing the Late Winter Storm Period of 1966," May 1967.

Horn, J. D., and J. A. Hunt, "System Design for the Atmospheric Sciences Office Wind Research Facility," May 1967. 224.

Miller, Walter B., and Henry Rachele, "Dynamic Evaluation of Radar and Photo Tracking Systems," May 1967. 225. 226.

Bonner, Robert S., and Ralph H. Rohwer, "Acoustical and Meteorological Data Report - SOTRAN III and IV," May 1967.

Rider, L. J., "On Time Variability of Wind at White Sands Missile Range, New Mexico," June 1967. 227.

Randhawa, Jagir S., "Mesospheric Ozone Measurements During a Solar Eclipse," 228. June 1967.

Beyers, N. J., and B. T. Miers, "A Tidal Experiment in the Equatorial Stratosphere over Ascension Island (8S)", June 1967. 229.

Miller, W. B., and H. Rachele, "On the Behavior of Derivative Processes," June 1967 230.

Walters, Randall K., "Numerical Integration Methods for Ballistic Rocket Trajec-231. tory Simulation Programs," June 1967

232. Hansen, Frank V., "A Diabatic Surface Boundary Layer Model," July 1967

Butler, Ralph L., and James K. Hall, "Comparison of Two Wind Measuring Systems with the Contraves Photo-Theodolite," July 1967. 233.

Webb, Willis L., "The Source of Atmospheric Electrification." June 1967.

- Hinds, B. D., "Radar Tracking Anomalies over an Arid Interior Basin," August 1967. 235.
- Christian, Larry O., "Radar Cross Sections for Totally Reflecting Spheres," August 236. 1967
- D'Arcy, Edward M., "Theoretical Dispersion Analysis of the Aerobee 350," August 1967.
- Anon., "Technical Data Package for Rocket-Borne Temperature Sensor," August 238. 1967.
- Glass, Roy I., Roy L. Lamberth, and Ralph D. Reynolds, "A High Resolution Con-239 tinuous Pressure Sensor Modification for Radiosondes," August 1967.
- Low, Richard D. H., "Acoustic Measurement of Supersaturation in a Warm Cloud." 240 August 1967.
- Rubio, Roberto, and Harold N. Baliard, "Time Response and Aerodynamic Heating of Atmospheric Temperature Sensing Elements," August 1967.
- Seagraves, Mary Ann B., "Theoretical Performance Characteristics and Wind Effects for the Aerobee 150," August 1967. 242.
- Duncan, Louis Dean, "Channel Capacity and Coding," August 1967. 243.
- Dunaway, G. L., and Mary Ann B. Seagraves, "Launcher Settings Versus Jack Settings for Aerobee 150 Launchers Launch Complex 35, White Sands Missile Range, New Mexico," August 1967. 244.
- Duncan, Louis D., and Bernard F. Engebos, "A Six-Degree-of-Freedom Digital Com-245 puter Program for Trajectory Simulation," October 1967.
- Rider, Laurence J., and Manuel Armendariz, "A Comparison of Simultaneous Wind 246. Profiles Derived from Smooth and Roughened Spheres," September 1967
- Reynolds, Ralph D., Roy L. Lamberth, and Morton G. Wurtele, "Mountain Wave 247. Theory vs Field Test Measurements," September 1967.
- Lee, Robert P., "Probabilistic Model for Acoustic Sound Ranging," October 1967.
- Williamson, L. Edwin, and Bruce Kennedy, "Meteorological Shell for Standard Artillery Pieces A Feasibility Study," October 1967. 249.
- Rohwer, Ralph H., "Acoustical, Meteorological and Seismic Data Report SOTRAN V and VI," October 1967. 250.
- Nordquist, Walter S., Jr., "A Study in Acoustic Direction Finding," November 1967. Nordquist, Walter S., Jr., "A Study of Acoustic Monitoring of the Gun Probe System," November 1967. **252**.
- Avara, E. P., and B. T. Miers, "A Data Reduction Technique for Meteorological Wind Data above 30 Kilometers," December 1967. 253.
- Hansen, Frank V., "Predicting Diffusion of Atmospheric Contaminants by Consideration of Turbulent Characteristics of WSMR," January 1968. 254
- Randhawa, Jagir S., "Rocket Measurements of Atmospheric Ozone," January 1968. 255
- D'Arcy, Edward M., "Meteorological Requirements for the Aerobee-350," January 256.1968
- D'Arcy, Edward M., "A Computer Study of the Wind Frequency Response of Unguided Rockets," February 1968.

Security Classification

DOCUMENT CONT		-	
(Security classification of title, body of obstract and indexing of RIGINATING ACTIVITY (Corporate author)	annotation must be a		SECURITY CLASSIFICATION
U. S. Army Electronics Command			lassified
Fort Monmouth, New Jersey 07703		38 680UP	
A COMMITTED STIENY OF THE MIND PRESURENCY AND			
A COMPUTER STUDY OF THE WIND FREQUENCY RES	PONSE OF UNG	UIDED ROC	KETS
DESCRIPTIVE NOTES (Type of report and inclusive dates)			
AUTHORIB: (First name, middle initial, last name)			
TO THORITY (PITET NAME), BIOME (MILIO), 1661 NO.36)			
Edward M. D'Arcy			
February 1968	74 TOTAL NO 0	PA681	78 NO OF REFS
CONTRACT OR SRANT NO	96 ORIGINA TOR'S	14	7.7.4.4
à PROJECT NO	ECON-	-5177	
CDA TASK 1T014501B53A=10	MIS POPPER REPOR	T NO(S) (Any	other numbers that may be as algo-
4 ~			
DISTRIBUTION STATEMENT	l		
Distribution of this report is unlimited.			
A110			
1 SUPPLEMENTARY NOTES	Atmospheric		s Laboratory
	U. S. Army		
			Range, N. M. 88002
3 ABSTRACT	<u> </u>		
The wind frequency response of se using data collected by simultaneous r 100 gm balloon. Results show there ca dicted rocket impacts using the two ba to affect the rocket only to a small d rocket impact prediction applications. layer gives results comparable to the	eleases of a n be large d lloons. Hig egree and ca Averaging	jimspher ifference twind from beigne winds over	re and a standard es in the pre- requencies are shown pred in real-time er a fifty-foot
D			SSIFIED

UNCLASSIFIED

	Security Classification							
14			LIN	R A	LIN	K 0	LIN	н с
		KEY WORDS	ROLE		#0LE	*7		.,
			1	+	1.000			
						i		[
1.	Ballistics.		1	i]	ł
,	Unguided Rockets.					i	İ	1
			1			1	1	1
3.							1	1
4.	Impact Prediction.							ł
	•				Ì	1		
			1	1		l		
			j	1		ı		l
				1		1		l
					1			
				i		i		1
				i	i			Į
							ļ	
					l		1	l
					ł]		ļ
				ļ			<u> </u>	
						1		
			1	l	1			ļ
			1	1	ļ	1	l	
			1		1			
l l			ł	Ì			l	i
1			ĺ		1	l		1
l l							!	
ı							I	
				1			ľ	
							Į.	ļ
							ì	
					1			ĺ
1			ļ			ľ	1	
							1	
1						1	1	l
				ĺ		1	l	
					1		i	
ľ				1	1			
				1		ĺ		
				1				
				1	ľ	l	i	
						ĺ		
								i
				ļ				
								1
					1			
								1
			1					

UNCLASSIFIED

Security Classification